Today, I’d like to try something and see how it works out. Using the Boids work I did recently as a starting point, I’m wondering if I could get something interesting if I grouped boids into groups of three, and instead of drawing the boids themselves, draw the triangles defined by the positions of each boid in each group of three. I’m not sure how well that will work, but let’s give it a try!
This week I wanted to talk about something a little different, something only peripherally related to art: Behavioral Animation. Behavioral Animation is a kind of computer animation in which an autonomous object determines its own actions by interacting with its environment according to certain rules. Behavioral Animation is a fairly vague term, which covers quite a bit of ground. The Game of Life A simple example is The Game of Life, developed by John Conway , a British mathematician, in the early 1970s. The game starts with an infinite grid (well, potentially infinite – please don’t try to draw an infinite grid…) with some of the squares filled in. It’s important to notice that each square is surrounded by eight additional squares. Nothing surprising there, it’s just how grids work! Then the squares are modified according to two simple rules: 1) if square that is filled in has either two or three of its eight neighboring squares filled in, then it remains filled in, otherwise it is emptied. 2) if an unoccupied square has exactly three filled in neighbors, then it is filled in. This continues through successive generations. The interesting thing about this is that is mimics population growth. Consider each square to be a living cell if it is filled in. If the cell doesn’t have enough neighbors, it dies (perhaps of loneliness.) If it has too many neighbors, it dies (perhaps for lack of resources.) If conditions are just right, they can reproduce, and new cells appear (we’ll just gloss over the fact that that takes three neighbors, not two!) It turns out this models things like bacterial growth fairly well.